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Introduction: spatial transcriptomics
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d  Generative Models [Lopez et al. 2018, ...]



Related works

1. Machine Learning for Spatial Transcriptomics
|EI Graph-based [Zhu et al. 2020, Hu et al. 2021, ...] |
enerative Models [Lopez etal. 2018, ...]

usage for different
downstream analysis

. Con: They have limited
<

[Hu et al. 2021]



Related works

1. Machine Learning for Spatial Transcriptomics
d__Graph-based [Zhu et al. 2020, Hu et al. 2021, ...]
[EI Generative Models [Lopez et al. 2018, ]]

Pro: Flexible for different downstream tasks: identify
cell types or subtypes, batch correction, visualization,
clustering, and differential expression...

Con: How to encode spatial Information?



Related works

1. Machine Learning for Spatial Transcriptomics
A Graph-based [Zhu et al. 2020, Hu et al. 2021, ...]
A Generative Models [Lopez et al. 2018, ...]
A Challenge: How to efficiently model spatial information when
building generative models for spatial transcriptomics?
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Related works

2. Geometry-preserving Generative Model
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Isometry [Beshkov et al. 2022, ...]

Constrained-optimization [Chen et al. 2022, ...]

Existing works have adopt the idea of geometry-preserving
generation in computer vision tasks, while direct application
to spatial data is not straightforward.

Questions: How to incorporate the idea of geometry-preserving
in studying spatially-resolved gene expressions?



This paper

Background

Introduce distance-preserving generative model
Deriving loss function and model specification
Experiment on mouse brain tissues Visium dataset
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Background: Variational Autoencoders
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tuae = ) —log py(yilzi) + Dxv (g0 (zilys)llp(20)) -
i=1

Loss function of VAE (evidence lower bound)

Notation:

[ ¥ denotes gene expression

3 2z denotes latent representation

Q py, g9 denotes encoder and decoder
network (distributions!)
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their latent representation extracted using VAE (right)



Background: Variational Autoencoders
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I d e a gene expression y spatial Information s

Data — (Locally) geometric-preserving
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Distance-preserving generative model

Definition (simplified)

A distance-preserving generative model satisfies:
P (Mds(s, s') <dgz(z,2) < L-Ndg(s,s')) > 1—e,

where:

d dg,dz denote the spatial distance and latent distance metric
Q s ¢, 2, 2/ denotes the generation process of the generative model
3 )\ is some arbitrary constant

Q 7, isthe distortion constant

O € isthe error parameter



Distance-preserving generative model

Definition (simplified)

A distance-preserving generative model satisfies:
P (Mds(s, s') <dgz(z,2) < L-Ndg(s,s')) > 1—e,

where:

d dg,dz denote the spatial distance and latent distance metric
Q s ¢, 2, 2/ denotes the generation process of the generative model
3 )\ is some arbitrary constant
Q 7, isthe distortion constant
O € isthe error parameter

Measures how unsmooth the probabilistic encoder
function is.

O Measures the maximum allowance of the ratio of
outliers



Distance-preserving generative model

Consider 4 cells/samples indicated by dots:
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Distance-preserving generative model

Definition (simplified)

A distance-preserving generative model satisfies:

P (Mds(s, s') <dgz(z,2) < L-Ndg(s,s')) > 1—e,

where:

d dg,dz denote the spatial distance and latent distance metric
Q s ¢, 2, 2/ denotes the generation process of the generative model
3 )\ is some arbitrary constant

Q 7, isthe distortion constant
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Model: distortion loss

Theorem (simplified)

Define the following (population) distortion loss:

Lpis =E [|dz(z,2") — X ds(s, §)]] .

where the expectation is taken w.r.t. the randomness of the generation process.
Given some fixed error parameter €, the distortion constant can be bounded as:

L
L§C+(’)< DIS),

€

where (' is some constant that depends on the probabilistic structure of the
generation process.

Takeaway: To minimize L, it is equivalent to minimize £Lpis .



Model

The proposed objective is given by:

gl(ﬁh}l’ := fyag + afpis, fois = —||G®D ~A-Go D,



Model

The proposed objective is given by:

min £ := fyag + ales,
0.¢,4

weighted matrix (e.g. adjacency matrix)
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pairwise distance matrices
in the latent and spatial spaces




Model

The proposed objective is given by: weighted matrix (e.g. adjacency matrix)

.

IGeD, -A:-Go D,

]

pairwise distance matrices
in the latent and spatial spaces

min £ := &g + alpis, T i
oo VAE DIS tois =

d  Tractability:
A Unconstrained optimization problem
A The distortion loss is decomposable
[ Flexibility: allowing arbitrary VAE architecture and models
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Distance-preserving generative modeling improve
representation learning.

Distorted Representation Distance-Preserving Representation

84

Figure 4. Visualization of latent representation space obtained from scVI (left) and scVI regularized with distortion loss (right).
More isotropic and homogeneous ellipses indicate more distance-preserving.



Spatial correlations preserved in the latent space

Table 1. Moran’s I and Geary’s C of the latent representation extracted by scVi and VAE on 4 test datasets, with and without
distance-preserving penalty, averaged over 5 repeated trials. Enforcing distance-preserving property induces stronger spatial

autocorrelations.

Moran’s I Geary’s C
A2 Al P2 P1 A2 Al P2 P1

VAE  0.62(0.07) 0.55(0.05) 0.52(0.05) 0.52(0.03) 0.36(0.06) 0.41(0.03)  0.49(0.05) 0.43(0.03)
scVI  0.43(0.03) 0.52(0.04) 0.37(0.02) 0.45(0.04) 0.57(0.03) 0.48(0.04)  0.62(0.02)  0.55(0.04)

Distance ~ VAE  0.64(0.02) 0.60(0.03) 0.56(0.06) 0.49(0.06) 0.35(0.02) 0.37(0.02) 0.45(0.07) 0.46(0.05)
Preserving  scVI  0.45(0.04) 0.52(0.04) 0.43(0.02) 0.47(0.03) 0.55(0.05) 0.48(0.04) 0.57(0.02) 0.53(0.03)

Method

Distorted




Smaller reconstruction errors on several baseline models
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Figure 5. Mean squared error (MSE) of scVi and VAE on 4 test datasets, with and without distance-preserving penalty, averaged

over 5 repeated trials. Enforcing distance-preserving property induces smaller reconstruction errors of log-normalized and
library-size-adjusted data.
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Stability and robustness
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Figure 6. Sensitivity analysis of distance-preserving regularization strength in the performance.
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