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Lose spatial 
information!

Source: 10X Genomics
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Efficiently utilize the 
spatial information…

[Lopez et al. 2022]
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1. Machine Learning for Spatial Transcriptomics
❏ Graph-based [Zhu et al. 2020, Hu et al. 2021, …]
❏ Generative Models [Lopez et al. 2018, …]

Con: They have limited 
usage for different 
downstream analysis 

[Hu et al. 2021]



Related works

1. Machine Learning for Spatial Transcriptomics
❏ Graph-based [Zhu et al. 2020, Hu et al. 2021, …]
❏ Generative Models [Lopez et al. 2018, …]

Pro: Flexible for different downstream tasks: identify 
cell types or subtypes, batch correction, visualization, 
clustering, and differential expression…
Con: How to encode spatial Information?



Related works

1. Machine Learning for Spatial Transcriptomics
❏ Graph-based [Zhu et al. 2020, Hu et al. 2021, …]
❏ Generative Models [Lopez et al. 2018, …]
❏ Challenge: How to efficiently model spatial information when 

building generative models for spatial transcriptomics?
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Related works

2. Geometry-preserving Generative Model
❏ Isometry [Beshkov et al. 2022, …]
❏ Constrained-optimization [Chen et al. 2022, …]
❏ Existing works have adopt the idea of geometry-preserving 

generation in computer vision tasks, while direct application 
to spatial data is not straightforward. 

❏ Questions: How to incorporate the idea of geometry-preserving 
in studying spatially-resolved gene expressions?



This paper

❏ Background
❏ Introduce distance-preserving generative model
❏ Deriving loss function and model specification
❏ Experiment on mouse brain tissues Visium dataset
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Source: IBM



Background: Variational Autoencoders

Source: IBM

Loss function of VAE (evidence lower bound)
Notation:
❏    denotes gene expression
❏    denotes latent representation
❏           denotes encoder and decoder 

network (distributions!)



Background: Variational Autoencoders

Source: IBM Spatial feature of gene Calb2, Gng4, Nrgn (left) and 
their latent representation extracted using VAE (right)



Background: Variational Autoencoders

Source: IBM Spatial feature of gene Calb2, Gng4, Nrgn (left) and 
their latent representation extracted using VAE (right)

(Without spatial information)
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Within each indexed spatial domains, gene 
expressions exhibit similar properties

(Locally) geometric-preserving



Idea

Encoder

Data

Latent 
Representation

How to encode spatial 
geometric properties?

Geometric similarity 
in the original space

Geometric similarity 
in the latent space
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❏ Background
❏ Introduce distance-preserving generative model
❏ Deriving loss function and model specification
❏ Experiment on mouse brain tissues Visium dataset
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Idea

Encoder

Data

Latent 
Representation

How to define “smooth” 
probabilistic encoder networks?



A distance-preserving generative model satisfies:

where:
❏          denote the spatial distance and latent distance metric     
❏              denotes the generation process of the generative model
❏    is some arbitrary constant
❏    is the distortion constant
❏    is the error parameter

Distance-preserving generative model

Definition (simplified)



A distance-preserving generative model satisfies:

where:
❏          denote the spatial distance and latent distance metric     
❏              denotes the generation process of the generative model
❏    is some arbitrary constant
❏    is the distortion constant
❏    is the error parameter

Distance-preserving generative model

Definition (simplified)

❏ Measures how unsmooth the probabilistic encoder 
function is.

❏ Measures the maximum allowance of the ratio of 
outliers



Distance-preserving generative model

An illustration of the definition of distance-preserving generative models

Consider 4 cells/samples indicated by dots:



A distance-preserving generative model satisfies:

where:
❏          denote the spatial distance and latent distance metric     
❏              denotes the generation process of the generative model
❏    is some arbitrary constant
❏    is the distortion constant
❏    is the error parameter

Distance-preserving generative model

Definition (simplified)

How to tractably learn a 

distance-preserving generative model?



This paper

❏ Background
❏ Introduce distance-preserving generative model
❏ Deriving loss function and model specification
❏ Experiment on mouse brain tissues Visium dataset



Define the following (population) distortion loss:

where the expectation is taken w.r.t. the randomness of the generation process. 
Given some fixed error parameter    , the distortion constant can be bounded as:

where       is some constant that depends on the probabilistic structure of the 
generation process.

Model: distortion loss

Theorem (simplified)

Takeaway: To minimize    , it is equivalent to minimize         . 



Model

The proposed objective is given by:



Model

pairwise distance matrices
in the latent and spatial spaces

weighted matrix (e.g. adjacency matrix)The proposed objective is given by:



Model

❏ Tractability: 
❏ Unconstrained optimization problem
❏ The distortion loss is decomposable

❏ Flexibility: allowing arbitrary VAE architecture and models

pairwise distance matrices
in the latent and spatial spaces

weighted matrix (e.g. adjacency matrix)The proposed objective is given by:



This paper

❏ Background
❏ Introduce distance-preserving generative model
❏ Deriving loss function and model specification
❏ Experiment on mouse brain tissues Visium dataset



Distance-preserving generative modeling improve 
representation learning.



Spatial correlations preserved in the latent space



Smaller reconstruction errors on several baseline models



Stability and robustness
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