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Introduction
Motivating example: Extreme differences beyond a simple shift in
the average cannot be captured by the widely adopted average treat-
ment effect outcome metric.
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Goal: Our goal is to systematically address the following three prac-
tical challenges for data-driven decision making in one versatile and
model-agnostic framework.

• Counterfactual Inference: The goal is to infer what would have
happened if were to act in a way not observed in previous results.

• Temporal Setting: Collected data is blurred with treatments and
confounders that has time-dependent structures.

• Distribution Learning: People care about the entire
counterfactual distribution of the outcome variable.

Preliminaries
Notation: At time t, denote the outcome variable as Yt, denote the d-
length history of treatments and covariates as At = (At−d+1, . . . , At)
and X t = (Xt−d+1, . . . , Xt). Lowercase letters represents their real-
izations. We use f to denote distribution.

Important Lemma: Under some standard assumptions, we have

fa (y) =
∫

1{A = a}∏t
τ=t−d f

(
Aτ |Aτ−1, Xτ

)f (
y, A, X

)
dAdX,

Proposed Method
Learning Objective: We aim to minimize the Kullback–Leibler (KL)
divergence between a proxy conditional distribution fθ(·|a) and fa.
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Loss Function: This generative learning objective can be approxi-
mated by maximizing the log-likelihood:

Ey∼fa
log fθ(y|a) ≈

∑
(y,a,x)∈D

wϕ(a, x) log fθ(y|a),

where wϕ(a, x) denotes the subject-specific IPTW, parameterized by
ϕ ∈ Φ, which takes the form:

wϕ(a, x) = 1∏t
τ=t−d fϕ(aτ |aτ−1, xτ)

.

Model Architecture: Our proposed model, MSCVAE, adopts a stan-
dard encoder-decoder structure.
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Synthetic Experiment

d = 1 d = 3 d = 5
Methods Mean Wasserstein Mean Wasserstein Mean Wasserstein

Linear MSM 0.003 NA 0.055 NA 0.186 NA
KDE 0.246 0.433 0.528 0.579 0.536 0.601

IPTW+KDE 0.010 0.127 0.048 0.133 0.146 0.181
CVAE 0.263 0.264 0.524 0.559 0.537 0.612

MSCVAE 0.008 0.053 0.043 0.107 0.147 0.171

Conclusion: MSCVAE outperforms other baselines on synthetic data.

COVID-19 Data Experiment
Description: 5 features of 3219 U.S. counties are collected in 2020-
2021 spanning across 49 weeks. We aim to make counterfactual pre-
dictions regarding how mask policies affect COVID-19 number of
cases per capita.
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Insight: Imposing mask mandate can decrease the mean of the dis-
tribution, but increases its variance in the same time. This implies
that while mask mandate tend to help control virus spread, a thorough
examination of the specific circumstances is highly recommended for
mask-policymakers to avoid any unintended consequences.

NIPS-2017 December 6, 2017 han.zhao@cs.cmu.edu


