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Figure: Given environment uncertainty and an optimization model, we
aim to quantify the risk associated with adopting a specific decision.

Contributions: (i) Introduce “decision risk assessment”;
(ii) Developed an algorithm that is statistically sound and
efficient; (iii) Empirical validations of the framework.

Setup: Decision Risk Assessment

Similar to predict-then-optimize problems, define:
• X ∈ X : observed covariates associated with Y ;
• Y ∈ Y : random outcome variable that serve as

objective function parameters;
• θ: known parameters within the optimization problem.

Novel Objective

Given the optimization problem:
π(Y ; θ) := arg min

z∈Rd
{g(z, Y ; θ) | z ∈ Z(θ)} .

We aim to estimate some risk measure α(z) such that:
P {z ∈ π(Y ; θ)} ≥ 1 − α(z), ∀z ∈ Rd. (1)
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Figure: Figure 2: The overall architecture of the proposed framework, consisting of two steps: (i) Map the prespecified decision z ∈ Z(θ) to its inverse
feasible region π−1(z; θ) ⊆ Y . (ii) Assess the risk certificate (i.e., coverage probability) via conformalized risk estimation over π−1(z; θ) using data of Y .

Algorithmic Details

Step 1: Reformulation with Inverse Feasible Region:

Proposition 1: Define inverse feasible region
π−1(z; θ) =

⋂
z′∈Z(θ)

{y ∈ Y | g(y, z) ≤ g(y, z′)}

Then, the objective (1) can be reformulated as:
P {z ∈ π(Y ; θ)} ≡ P

{
Y ∈ π−1(z; θ)

}
. (2)

Continuing the derivation on the RHS of (2):

P
{
Y ∈ π−1(z; θ)

} (i)
≥ P {Y ∈ C(X ;α(z))}

(ii)
≥ 1 − α(z),

So in Step 2, we only need to construct a set C(X ;α(z)) that can
jointly satisfy (i) and (ii).

Step 2: Generative Conformal Prediction: The set is
defined as

C(k)(xn+1;α) =
{
y ∈ Rd | ∥y − ŷ

(k)
n+1∥2 ≤ h(α,Dcal)

}
where h(α,Dcal) is the conformalized radius, and ŷ(k)

n+1 is the k-th
generated outcome drawn from a fitted generative model f (Y |X).
Then, the k-th risk estimator is defined as

α̂(k)(z) = min
α∈[0,1]

{
α | C(k)(xn+1;α) ⊆ π−1(z; θ)

}
TheseK estimators are averaged to obtain the final risk estimators.

Figure: Illustration of the generative conformal prediction procedure

Theoretical Guarantee

Let ri denote the calibrated nonconformity scores:
ri = ∥ŷi − yi∥2, yi ∈ Dcal.

Theorem 1 The estimator α̂(z) satisfies the following:
• When h(α,Dcal) = Q̂ (⌈(n + 1)(1 − α)⌉/n), where Q̂

denotes the quantile function of {ri}, then
P {z ∈ π(Y ; θ)} ≥ 1 − EX,D [α̂(z)] − ϵ, ∀z ∈ Rd,

where ϵ is a small constant induced by nonexchangeability.
• When h(α,Dcal) = ∑n

i=1 ri/(α(n + 1) − 1), then
P {z ∈ π(Y ; θ)} ≥ 1 − EX,D [α̂(z)] , ∀z ∈ Rd,

Key: The estimator upper-bounds the true risk in expectation.

Efficient Computation: Separable Objective

Suppose there exist (potentially nonlinear) feature mappings:
ϕ : X → Rd, ψ : Z → Rd,

such that the objective function can be written as g(z, Y ; θ) =
ϕ(Y )⊤ψ(z), then the estimator has a closed-form solution:

Theorem 2: The risk estimator can be simplified to

α̂(z) = 1 −
K∑
k=1

w(k)(z) ·
∏
u∈E

1
{
ϕ(ŷ(k)

n+1)⊤(ψ(z) − u) ≤ 0
} ,

where w(k)(z) is the conformalized weight, defined as:

1
n

n∑
i=1

1

∥ϕ(ŷ(k)
i ) − ϕ(yi)∥ ≤ min

u∈E\ψ(z)

|ϕ(ŷ(k)
n+1)⊤(ψ(z) − u)|
∥ϕ(z) − u∥


and E denotes the set of extreme points of {ψ(z) : z ∈ Z(θ)}.

Key: The algorithm is computationally efficient under certain
instances or under separable function approximation.

Numerical Results
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Figure: Pictorial representation of the optimization settings I and II. We
illustrate the feasible region (gray shaded) in the decision space and the
corresponding inverse feasible regions (cones) in the outcome space.
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Figure: Estimated risk for three ablation models of CREDO over different
decisions. Without the conformalized procedure, the Naive Sampling
approach is prone to violating the conservativeness requirement.
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Figure: Three performance metric evaluation results of the ablation
models. From left to right columns: Conservativeness of different ablation
models; True positive rate (TPR) versus generative sample size K;
Relative accuracy versus variance scale σ
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Figure: Frequency of each selected decision over 100 repeated trials,
compared across all baseline methods. The left panel corresponds to
Setting I, and the right to Setting II.

Figure: Top four candidate upgrade decisions with the lowest estimated
risks (left to right) in our real data experiment recommended by CREDO.
Each shaded region represents the span of a substation network.
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