

Conformalized Decision Risk Assessment

Wenbin Zhou¹, Agni Orfanoudaki², Shixiang Zhu¹

¹Carnegie Mellon University, ²University of Oxford

Intro: DM Under Uncertainty

Challenges:

(1) Uncertainty is not explicitly communicated

(2) Decisions could be brittle under multi-modality

Prospect: Collaborative Mechanism:

Figure: Given environment uncertainty and an optimization model, we aim to quantify the risk associated with adopting a specific decision.

Contributions: (i) Introduce "decision risk assessment"; (ii) Developed an algorithm that is statistically sound and efficient; (iii) Empirical validations of the framework.

Setup: Decision Risk Assessment

Similar to **predict-then-optimize** problems, define:

- $X \in \mathcal{X}$: observed *covariates* associated with Y;
- $Y \in \mathcal{Y}$: random *outcome* variable that serve as objective function parameters;
- θ : known parameters within the optimization problem.

Novel Objective

Given the optimization problem:

$$\pi(Y;\theta) \coloneqq \arg\min_{z \in \mathbb{R}^d} \left\{ g(z,Y;\theta) \mid z \in \mathcal{Z}(\theta) \right\}.$$

We aim to estimate some risk measure $\alpha(z)$ such that:

$$\mathbb{P}\left\{z \in \pi(Y; \theta)\right\} \ge 1 - \alpha(z), \quad \forall z \in \mathbb{R}^d. \tag{1}$$

feasible region $\pi^{-1}(z;\theta)\subseteq\mathcal{Y}$. (ii) Assess the risk certificate (i.e., coverage probability) via conformalized risk estimation over $\pi^{-1}(z;\theta)$ using data of Y.

Algorithmic Details

Step 1: Reformulation with Inverse Feasible Region:

Proposition 1: Define inverse feasible region

$$\pi^{-1}(z;\theta) = \bigcap_{z' \in \mathcal{Z}(\theta)} \{ y \in \mathcal{Y} \mid g(y,z) \le g(y,z') \}$$

Then, the objective (1) can be reformulated as:

$$\mathbb{P}\left\{z \in \pi(Y;\theta)\right\} \equiv \mathbb{P}\left\{Y \in \pi^{-1}(z;\theta)\right\}. \tag{2}$$

Continuing the derivation on the RHS of (2):

$$\mathbb{P}\left\{Y \in \pi^{-1}(z;\theta)\right\} \stackrel{(i)}{\geq} \mathbb{P}\left\{Y \in \mathcal{C}(X;\alpha(z))\right\} \stackrel{(ii)}{\geq} 1 - \alpha(z),$$

So in Step 2, we only need to construct a set $C(X; \alpha(z))$ that can jointly satisfy (i) and (ii).

Step 2: Generative Conformal Prediction: The set is defined as

$$C^{(k)}(x_{n+1}; \alpha) = \left\{ y \in \mathbb{R}^d \mid ||y - \hat{y}_{n+1}^{(k)}||_2 \le h(\alpha, \mathcal{D}_{cal}) \right\}$$

where $h(\alpha, \mathcal{D}_{cal})$ is the *conformalized radius*, and $\hat{y}_{n+1}^{(k)}$ is the k-th generated outcome drawn from a fitted generative model f(Y|X). Then, the k-th risk estimator is defined as

$$\hat{\alpha}^{(k)}(z) = \min_{\alpha \in [0,1]} \left\{ \alpha \mid \mathcal{C}^{(k)}(x_{n+1}; \alpha) \subseteq \pi^{-1}(z; \theta) \right\}$$

These K estimators are averaged to obtain the final risk estimators.

Figure: Illustration of the generative conformal prediction procedure

Theoretical Guarantee

Let r_i denote the calibrated nonconformity scores:

$$r_i = \|\hat{y}_i - y_i\|_2, \quad y_i \in \mathcal{D}_{\text{cal}}.$$

Theorem 1 The estimator $\hat{\alpha}(z)$ satisfies the following:

• When $h(\alpha, \mathcal{D}_{cal}) = \hat{Q}(\lceil (n+1)(1-\alpha)\rceil/n)$, where \hat{Q} denotes the quantile function of $\{r_i\}$, then

$$\mathbb{P}\left\{z \in \pi(Y; \theta)\right\} \ge 1 - \mathbb{E}_{X, \mathcal{D}}\left[\widehat{\alpha}(z)\right] - \epsilon, \quad \forall z \in \mathbb{R}^d,$$

where ϵ is a small constant induced by nonexchangeability.

• When
$$h(\alpha, \mathcal{D}_{cal}) = \sum_{i=1}^{n} r_i / (\alpha(n+1) - 1)$$
, then
$$\mathbb{P}\left\{z \in \pi(Y; \theta)\right\} \ge 1 - \mathbb{E}_{X, \mathcal{D}}\left[\widehat{\alpha}(z)\right], \quad \forall z \in \mathbb{R}^d,$$

Key: The estimator upper-bounds the true risk in expectation.

Efficient Computation: Separable Objective

Suppose there exist (potentially nonlinear) feature mappings:

$$\phi: \mathcal{X} \to \mathbb{R}^d, \quad \psi: \mathcal{Z} \to \mathbb{R}^d,$$

such that the objective function can be written as $g(z, Y; \theta) = \phi(Y)^{\top}\psi(z)$, then the estimator has a **closed-form** solution:

Theorem 2: The risk estimator can be simplified to

$$\hat{\alpha}(z) = 1 - \sum_{k=1}^{K} \left[w^{(k)}(z) \cdot \prod_{u \in \mathcal{E}} \mathbf{1} \left\{ \phi(\hat{y}_{n+1}^{(k)})^{\top} (\psi(z) - u) \le 0 \right\} \right],$$

where $w^{(k)}(z)$ is the conformalized weight, defined as:

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \left\{ \|\phi(\hat{y}_i^{(k)}) - \phi(y_i)\| \le \min_{u \in \mathcal{E} \setminus \psi(z)} \frac{|\phi(\hat{y}_{n+1}^{(k)})^{\top}(\psi(z) - u)|}{\|\phi(z) - u\|} \right\}$$

and \mathcal{E} denotes the set of extreme points of $\{\psi(z):z\in\mathcal{Z}(\theta)\}$.

Key: The algorithm is computationally efficient under certain instances or under separable function approximation.

Numerical Results

Figure: Pictorial representation of the optimization settings I and II. We illustrate the feasible region (gray shaded) in the decision space and the corresponding inverse feasible regions (cones) in the outcome space.

Figure: Estimated risk for three ablation models of CREDO over different decisions. Without the conformalized procedure, the Naive Sampling approach is prone to violating the conservativeness requirement.

Figure: Three performance metric evaluation results of the ablation models. From left to right columns: Conservativeness of different ablation models; True positive rate (TPR) versus generative sample size K; Relative accuracy versus variance scale σ

Figure: Frequency of each selected decision over 100 repeated trials, compared across all baseline methods. The left panel corresponds to Setting I, and the right to Setting II.

Figure: Top four candidate upgrade decisions with the lowest estimated risks (left to right) in our real data experiment recommended by CREDO. Each shaded region represents the span of a substation network.