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Introduction

Estimating the counterfactual outcome of treatment is essential
for decision-making in public health and clinical science, among
others.
Challenges: There are three unaddressed main challenges for
counterfactual inference considering time-varying treatments.
• Heterogeneity: The mean is incapable of describing the

heterogenous effect in counterfactual distribution.
• High-dimensionality: Estimation accuracy of

high-dimensional counterfactual outcomes quickly degrades.
• Distributional discrepancy: Greater distributional

mismatch is observed for longer treatment history
dependency.

Setting: At time t, denote
the outcome variable as Yt, de-
note the d-length history of treat-
ments and covariates as At =
(At−d+1, . . . , At) and X t =
(Xt−d+1, . . . , Xt). Lowercase
letters represent their realiza-
tions. Distributions are denoted
as f . The causal DAG is assumed
to be as the figure to the right.

Goal: We aim to learn a generator function that produces
samples of the outcome variable y given time-varying treatment
a,

gθ(z, a) : Rr × Ad → Y .

The generator can be learned by maximizing the following
(intractable) likelihood function

θ̂ = arg max
θ∈Θ

EA [Ey∼fa
log fθ(·|a)] .

Learning Objective

Lemma: Under unconfoundedness and positivity,

fa (y) =
∫ 1∏t

τ=t−d+1 f (aτ |aτ−1, xτ)
f (y, a, x) dx.

Proposition: The generative learning objective can be ap-
proximated by:

EA [Ey∼fa
log fθ(y|a)] ≈ 1

N

∑
(y,a,x)∈D

wϕ(a, x) log fθ(y|a),

where N represents the sample size, and wϕ(a, x) denotes
the subject-specific IPTW, parameterized by ϕ ∈ Φ, which
takes the form:

wϕ(a, x) = 1∏t
τ=t−d+1 fϕ(aτ |aτ−1, xτ)

.

Model Architecture
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Figure 1: The learning objective is to minimize the KL-divergence between the true
counterfactual distribution fa and a proxy conditional distribution fθ(·|a)
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Figure 2: The generator gθ produces samples of the outcome variable y given time varying
treatment a. The generated samples conform to the learned proxy distribution.

Experiments

Our framework is flexible to deploy with likelihood-based generative learning algorithms such as:

• Classifier-free guided diffusion model:

log fθ(·|a) ≥ −Es∼[1,S],y∼f (y|a),ϵs
||ϵs − ϵθ(

√
λ̄sy +

√
1 − λ̄sϵs, s, a)||2.

• Conditional variational autoencoder:
log fθ(·|a) ≥ −DKL (q(z|y, a)||pθ(z|a)) + Eqθ(z|y,a) [log pθ(y|z, a)] .

Figure: The estimated and true counterfactual distribution with history length of d = 5 on the fully synthetic
dataset (m = 1)
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Figure: Results on the semi-synthetic TV-MNIST datasets (m = 784) generated under a = (1, 1, 1).

d = 1 d = 3 d = 5
Methods Mean ↓ Wasserstein ↓ Mean ↓ Wasserstein ↓ Mean ↓ Wasserstein ↓
MSM+NN 0.001 (0.002) 0.601 (0.603) 0.070 (0.159) 0.689 (0.718) 0.198 (0.563) 0.600 (0.737)

KDE 0.246 (0.267) 0.244 (0.268) 0.520 (1.080) 0.538 (1.080) 0.538 (1.419) 0.539 (1.419)
Plugin+KDE 0.010 (0.014) 0.034 (0.036) 0.045 (0.168) 0.132 (0.168) 0.147 (0.598) 0.182 (0.598)

CRN 0.228 (0.280) 0.289 (0.331) 0.913 (1.753) 1.014 (1.757) 1.713 (4.080) 1.775 (4.080)
G-Net 0.211 (0.258) 0.572 (0.582) 1.167 (2.173) 1.284 (2.173) 2.314 (5.263) 2.354 (5.263)
CVAE 0.250 (0.287) 0.253 (0.288) 0.517 (1.061) 0.553 (1.061) 0.539 (1.430) 0.613 (1.430)

MSCVAE 0.006 (0.006) 0.055 (0.056) 0.046 (0.150) 0.105 (0.216) 0.150 (0.633) 0.173 (0.633)
MSDiffusion 0.029 (0.052) 0.056 (0.065) 0.086 (0.234) 0.135 (0.234) 0.207 (0.845) 0.259 (0.845)

Table: Quantitative performance on fully-synthetic data

Figure: Results on the semi-synthetic Pennsylvania COVID-19 mask datasets (m = 67) under the treatment
combination a = (1, 1, 1).

Application to COVID-19 Analysis

Description: 5 features of 3219 U.S. counties are collected in 2020-2021 spanning across 49
weeks. We aim to make counterfactual predictions regarding how mask policies affect COVID-19
number of cases per capita.
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Insight: Imposing mask mandate can decrease the mean of the distribution, but increases its
variance in the same time. This implies that while mask mandate tend to help control virus
spread, a thorough examination of the specific circumstances is highly recommended for mask-
policymakers to avoid any unintended consequences.


