Carnegie Nellon University

Counterfactual Generative Models for Time-Varying Treatments

Shenghao Wu¹, Wenbin Zhou¹, Minshuo Chen² and Shixiang Zhu¹

¹Carnegie Mellon University and ²Princeton University

Introduction

Estimating the counterfactual outcome of treatment is essential for decision-making in public health and clinical science, among others.

Challenges: There are **three** unaddressed main challenges for counterfactual inference considering time-varying treatments.

- **Heterogeneity:** The mean is incapable of describing the heterogenous effect in counterfactual distribution.
- High-dimensionality: Estimation accuracy of high-dimensional counterfactual outcomes quickly degrades.
 Distributional discrepancy: Greater distributional mismatch is observed for longer treatment history dependency.

Setting: At time t, denote the outcome variable as Y_t , denote the d-length history of treatments and covariates as $\overline{A}_t =$ (A_{t-d+1}, \ldots, A_t) and $\overline{X}_t =$ (X_{t-d+1}, \ldots, X_t) . Lowercase letters represent their realizations. Distributions are denoted as f. The causal DAG is assumed to be as the figure to the right.

 \overline{a} ,

Learning Objective

Lemma: Under unconfoundedness and positivity,

$$f_{\overline{a}}(y) = \int \frac{1}{\prod_{\tau=t-d+1}^{t} f(a_{\tau} | \overline{a}_{\tau-1}, \overline{x}_{\tau})} f(y, \overline{a}, \overline{x}) d\overline{x}.$$

Proposition: The generative learning objective can be approximated by:

$$\mathbb{E}_{\overline{A}} \left[\mathbb{E}_{y \sim f_{\overline{a}}} \log f_{\theta}(y|\overline{a}) \right] \approx \frac{1}{N} \sum_{(u,\overline{a},\overline{a}) \in \mathcal{D}} w_{\phi}(\overline{a},\overline{x}) \log f_{\theta}(y|\overline{a}),$$

Goal: We aim to learn a generator function that produces samples of the outcome variable y given time-varying treatment

 $g_{\theta}(z,\overline{a}): \mathbb{R}^r \times \mathcal{A}^d \to \mathcal{Y}.$

The generator can be learned by maximizing the following (intractable) likelihood function

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} \ \mathbb{E}_{\overline{A}} \ [\mathbb{E}_{y \sim f_{\overline{a}}} \ \log f_{\theta}(\cdot | \overline{a})]$$

 $(y,a,x) \in D$

where N represents the sample size, and $w_{\phi}(\overline{a}, \overline{x})$ denotes the subject-specific IPTW, parameterized by $\phi \in \Phi$, which takes the form:

$$w_{\phi}(\overline{a}, \overline{x}) = \frac{1}{\prod_{\tau=t-d+1}^{t} f_{\phi}(a_{\tau} | \overline{a}_{\tau-1}, \overline{x}_{\tau})}.$$

Figure 1: The learning objective is to minimize the KL-divergence between the true counterfactual distribution $f_{\overline{a}}$ and a proxy conditional distribution $f_{\theta}(\cdot|a)$

Experiments

Our framework is flexible to deploy with likelihood-based generative learning algorithms such as:

• Classifier-free guided diffusion model:

 $\log f_{\theta}(\cdot |\overline{a}) \geq -\mathbb{E}_{s \sim [1,S], y \sim f(y|\overline{a}), \epsilon_s} ||\epsilon_s - \epsilon_{\theta}(\sqrt{\overline{\lambda}_s}y + \sqrt{1 - \overline{\lambda}_s}\epsilon_s, s, \overline{a})||^2.$

• Conditional variational autoencoder:

 $\log f_{\theta}(\cdot|\overline{a}) \geq -D_{\mathrm{KL}}\left(q(z|y,\overline{a})||p_{\theta}(z|\overline{a})\right) + \mathbb{E}_{q_{\theta}(z|y,\overline{a})}\left[\log p_{\theta}(y|z,\overline{a})\right].$

Figure 2: The generator g_{θ} produces samples of the outcome variable y given time varying treatment \overline{a} . The generated samples conform to the learned proxy distribution.

	d =	= 1	d =	= 3	d = 5			
Methods	$Mean\downarrow$	Wasserstein \downarrow	$Mean\downarrow$	Wasserstein \downarrow	$Mean\downarrow$	Wasserstein \downarrow		
MSM+NN	0.001 (0.002)	0.601 (0.603)	0.070 (<u>0.159</u>)	0.689 (0.718)	0.198 (0.563)	0.600 (0.737)		
KDE	0.246 (0.267)	0.244 (0.268)	0.520 (1.080)	0.538 (1.080)	0.538 (1.419)	0.539 (1.419)		
Plugin+KDE	0.010 (0.014)	0.034 (0.036)	0.045 (0.168)	<u>0.132</u> (0.168)	0.147 (0.598)	<u>0.182</u> (0.598)		
CRN	0.228 (0.280)	0.289 (0.331)	0.913 (1.753)	1.014 (1.757)	1.713 (4.080)	1.775 (4.080)		
G-Net	0.211 (0.258)	0.572 (0.582)	1.167 (2.173)	1.284 (2.173)	2.314 (5.263)	2.354 (5.263)		
CVAE	0.250 (0.287)	0.253 (0.288)	0.517 (1.061)	0.553 (1.061)	0.539 (1.430)	0.613 (1.430)		
MSCVAE	<u>0.006</u> (<u>0.006</u>)	<u>0.055</u> (<u>0.056</u>)	<u>0.046</u> (0.150)	0.105 (<u>0.216</u>)	<u>0.150</u> (<u>0.633</u>)	0.173 (<u>0.633</u>)		
MSDiffusion	0.029 (0.052)	0.056 (0.065)	0.086 (0.234)	0.135 (0.234)	0.207 (0.845)	0.259 (0.845)		

Table: Quantitative performance on fully-synthetic data

Figure: Results on the semi-synthetic Pennsylvania COVID-19 mask datasets (m = 67) under the treatment combination $\overline{a} = (1, 1, 1)$.

Figure: The estimated and true counterfactual distribution with history length of d = 5 on the fully synthetic dataset (m = 1)

True	4	¥	4	પ	4	¥	4	ч	4	4	2	2	2	6	6
MSCVAE	4	4	4	Y	4	4	4	4	4	4	2	2	2	6	6
MSDiffusion	4	4	4	4	4	4	4	¥	4	4	2	2	2	6	6
CVAE	0	Ô	0	0	0	0	0	ð	0	Ø	Ì	Z	2	2	3
Diffusion	2	2	2	2	2	2	2	2	2	3	3	4	4	4	4
G-Net	2	2	2	1	2	2	2	2	2	1	2	2	2	2	2
Plugin+KDE	ų	4	4	ų	4	4	ц	4	4	1	Щ.	3	4	4	<i>ц</i>
KDE	3	3	3	3	3	3	3	3	3	3	4		4	4	4
MSM+NN	3	3	3		3	3		3	-	3	3	3	-	-	4

Figure: Results on the semi-synthetic TV-MNIST datasets (m = 784) generated under $\overline{a} = (1, 1, 1)$.

Application to COVID-19 Analysis

Description: 5 features of 3219 U.S. counties are collected in 2020-2021 spanning across 49 weeks. We aim to make counterfactual predictions regarding how mask policies affect COVID-19 number of cases per capita.

Insight: Imposing mask mandate can decrease the **mean** of the distribution, but increases its **variance** in the same time. This implies that while mask mandate tend to help control virus spread, a thorough examination of the specific circumstances is highly recommended for mask-policymakers to avoid any unintended consequences.