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Introduction

Goal: Our goal is to systematically address the following three
practical challenges for data-driven decision making in one ver-
satile and model-agnostic framework.
• Counterfactual Inference: The goal is to infer what

would have happened if were to act in a way not observed in
previous results.

• Temporal Setting: Collected data is blurred with
treatments and confounders that has time-dependent
structures.

• Distribution Learning: People care about the entire
counterfactual distribution of the outcome variable.

Notation: At time t, denote the outcome variable as Yt, de-
note the d-length history of treatments and covariates as At =
(At−d+1, . . . , At) and X t = (Xt−d+1, . . . , Xt). Lowercase letters
represents their realizations. We use f to denote distribution.

Proposed Method

Learning Objective: We aim to minimize the Kull-
back–Leibler (KL) divergence between a proxy conditional dis-
tribution fθ(·|a) and fa. The learned model will be a generator
function denoted as

gθ(z, a) : Rr × Ad → Y
Loss Function: Theoretical result derived in or paper shows
that

fa (y) =
∫

1{A = a}∏t
τ=t−d f

(
Aτ |Aτ−1, Xτ

)f
(
y, A, X

)
dAdX,

Using this lemma, we can approximate the generative learning
objective by maximizing the log-likelihood:

Ey∼fa
log fθ(y|a) ≈

∑
(y,a,x)∈D

wϕ(a, x) log fθ(y|a),

where wϕ(a, x) denotes the subject-specific IPTW, parameter-
ized by ϕ ∈ Φ, which takes the form:

wϕ(a, x) = 1∏t
τ=t−d fϕ(aτ |aτ−1, xτ)

.

Model: Our proposed model, MSCVAE, adopts an encoder-
decoder structure. Figure 1 shows the learning objective of the
model, and Figure 2 shows the model architecture of MSCVAE.
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Figure 1: Learning Objective
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Figure 2: Model Architecture

Evaluation

Synthetic Experiment: Our model demonstrates superior
performance both quantitatively and visually compared to ex-
isting baselines. For synthetic data, we evaluate measures of
distance between generated and true counterfactual distribution.
For semi-synthetic data constructed from COVID-19 data, we
can visually compare their distributional resemblance.

d = 1 d = 3 d = 5
Methods Mean Wasserstein Mean Wasserstein Mean Wasserstein

Linear MSM 0.003 NA 0.055 NA 0.186 NA
KDE 0.246 0.433 0.528 0.579 0.536 0.601

IPTW+KDE 0.010 0.127 0.048 0.133 0.146 0.181
CVAE 0.263 0.264 0.524 0.559 0.537 0.612

MSCVAE 0.008 0.053 0.043 0.107 0.147 0.171
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Case Study : COVID-19

Description: 5 features of 3219 U.S. counties are collected in
2020-2021 spanning across 49 weeks. We aim to make counter-
factual predictions regarding how mask policies affect COVID-19
number of cases per capita.

10−5 10−4 10−3 10−2 10−1

D
en

si
ty

Observed

10−5 10−4 10−3 10−2 10−1

Counterfactual

Number of cases per capita

a = (0, 0, 0)

a = (1, 1, 1)

Insight: Imposing mask mandate can decrease the mean of
the distribution, but increases its variance in the same time.
This implies that while mask mandate tend to help control virus
spread, a thorough examination of the specific circumstances is
highly recommended for mask-policymakers to avoid any unin-
tended consequences.


