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Introduction

Goal: Our goal is to systematically address the following three
practical challenges for data-driven decision making in one ver-
satile and model-agnostic framework.

e Counterfactual Inference: The goal is to infer what
would have happened if were to act in a way not observed in
previous results.

e Temporal Setting: Collected data is blurred with
treatments and confounders that has time-dependent
structures.
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e Distribution Learning: People care about the entire
counterfactual distribution ot the outcome variable.

Notation: At time ¢, denote the outcome variable as Y}, de-
note the d-length history of treatments and covariates as A; =

(Ar_git, ..., Ay) and Xy = (X;_gy1, ..., X;). Lowercase letters
represents their realizations. We use f to denote distribution.

Proposed Method

Learning Objective: We aim to minimize the Kull-
back—Leibler (KL) divergence between a proxy conditional dis-
tribution fy(-|a) and fz. The learned model will be a generator
function denoted as

go(2, @) R x AY = Y

Loss Function: Theoretical result derived in or paper shows
that

1{A = a} S

fa(y):/ ——~ (¥, A X

tT:t—df (AT|AT—17 XT) (

Using this lemma, we can approximate the generative learning
objective by maximizing the log-likelihood:

E,rlog fo(yla) = > wy(a, z)log folyla),
(y,a,x)eD

) dAdX,

where wy(@, T) denotes the subject-specific IPTW, parameter-
ized by ¢ € @, which takes the form:
@.7) :
wela,T) = —
’ HtT:t—d folar|ar—1,7;)
Model: Our proposed model, MSCVAE, adopts an encoder-

decoder structure. Figure 1 shows the learning objective of the
model, and Figure 2 shows the model architecture of MSCVAE.
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Figure 1: Learning Objective

Evaluation

Synthetic Experiment: Our model demonstrates superior
performance both quantitatively and visually compared to ex-
isting baselines. For synthetic data, we evaluate measures of
distance between generated and true counterfactual distribution.
For semi-synthetic data constructed from COVID-19 data, we
can visually compare their distributional resemblance.

d=1 d=3 d=5
Methods Mean Wasserstein Mean Wasserstein Mean Wasserstein
Linear MSM 0.003 NA 0.055 NA 0.186 NA
KDE 0.246 0.433 0.528 0.579 0.536 0.601
IPTW+KDE 0.010 0.127 0.048 0.133 0.146 0.181
CVAE 0.263 0.264 0.524 0.559 0.537 0.612
MSCVAE 0.008 0.053 0.043 0.107 0.147 0.171
MSCVAE - CVAE G-Net
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Figure 2: Model Architecture

Case Study : COVID-19

Description: 5 features of 3219 U.S. counties are collected in
2020-2021 spanning across 49 weeks. We aim to make counter-
factual predictions regarding how mask policies affect COVID-19
number of cases per capita.

Observed Counterfactual
|
|
|
|
= ]
0 |
= I
Q A
107 100 107° 10* 107 1072 10

Number of cases per capita

Insight: Imposing mask mandate can decrease the mean of
the distribution, but increases its variance in the same time.
This implies that while mask mandate tend to help control virus
spread, a thorough examination of the specific circumstances is
highly recommended for mask-policymakers to avoid any unin-
tended consequences.



