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Overview

Problem Setup:

Consider we have two sequentially obtained or generated data sequences D0 =
{x

(0)
1 , . . . , x

(0)
n0 } and D1 = {x

(1)
1 , . . . , x

(1)
n1 }. D0 is obtained from observations of a real-

world process. D1 is a synthetic data sequence generated by a learned time series

model.

P∗ denotes the true (but unknown) probability distribution governing the real-world time

series.

P̂ denotes the probability distribution learned by the time series model.

We aim to assess whether the learned time series model P̂ accurately captures the

underlying distribution of the real-world data. Formally, we aim to test the following

hypotheses:

H0 : P∗ = P̂ versus H1 : P∗ 6= P̂. (1)

Difficulties: Mainstream methods to measure the quality of time series models are

goodness-of-fit (GOF) tests. However, for general time series models, especially gener-

ative time series models:

(i) Parametric GOF Tests rely on comparing the parameters of models. When param-

eters are specified, prior knowledge and assumptions are required. When parameters

are estimated, particularly with complex data, the estimation process can be prone to

inaccuracies.

(ii) Nonparametric GOF Tests often employ distance-based method (e.g. Maximum

Mean Discrepancy). These approaches typically ignore time dependence.

(iii) Quality Measurements of Generative Models rely on heuristic metrics, e.g. Fréchet

Inception Distance for images and BLEU score for text, and cannot be readily applied

to time series data.

Neural Representation of History Embeddings

Neural Ordinary Differential Equations (ODEs): for a continuous-time series {x(t), t ≥
0}, we define a low-dimensional history embedding h(t). The evolution of the embedding

is governed by:

dh(t)
dt

= f (h(t), x(t)) and with Euler Approximation: hi+1 = hi + f (hi, xi)∆ti,

where f is the update function over continuous time. hi and hi+1 are the history em-

beddings at times ti and ti+1, and ∆ti = ti+1 − ti for n discrete observations {ti}n
i=1.

Inspired by the model, we parameterize the history embedding updates as

hi+1 = φ(xi, hi; θ),
using an embedding function φ(·, ·; θ) modeled as a neural network with θ as network’s

weights.

ConsistencyAssumption: The learned embedding function φ(·, ·; θ̂) is consistent, mean-

ing it approximates the true underlying embedding function as closely as necessary.

Therefore, the learned embedding hi+1 captures all relevant information from xi and hi.

Implications: The history embeddings {hi} possess theMarkov and homogeneity prop-
erty, i.e.:

P(hi|hi−1, . . . , h1) = P(hi|hi−1) and P(hi|hi−1) = P(hi−1|hi−2).

Reformulation of Goodness-of-fit Test: The distributional behavior of the learned

history embeddings can be fully characterized by their one-step transition density

function Q : H × H 7→ R≥0. Specifically, for any subset B ⊆ H and for all i, we have

P{hi+1 ∈ B|hi = h} =
∫

h′∈B
Q(h, h′)dh′,

where Q(h, ·) serves as the conditional probability density function of hi+1 given
hi = h. By leveraging the Markov property, the original GOF test can be reformulated

as:

H0 : Q? = Q̂ versus H1 : Q? 6= Q̂, (2)

where Q? denotes the true transition density function of the history embeddings

derived from real data, and Q̂ denotes the transition density function derived from

model-generated data. Proposed Algorithm

Figure 1. Overview of Testing Procedure

Step 0: Training and ExtractionWe begin by learning the embedding function φ using

the real-world observationsD0. After training, we apply the learned embedding function

to both datasets D0 and D1 and obtain their embedding sequences {h
(0)
i } and {h

(1)
i }.

Step 1: Embedding BinningWe partition the embedding space H into m bins of equal

size, denoted as H1, . . . , Hm to approximate Q with a discrete transition matrix.

1. A sequence of bin indices {yi}n
i=1 where yi =

∑m
u=1 u · 1 {hi ∈ Hu} .

2. The transition count matrix Cm = (cuv)mu,v=1 where

cuv =
∑n−1

i=1 1 {hi ∈ Hu and hi+1 ∈ Hv}.
3. The empirical transition probability matrix Qm := (quv)mu,v=1 where

quv = cuv∑m
v′=1 cuv′

.

We denote the empirical transition count and probability matrices obtained from D0 as
C

(0)
m and Q∗

m, and the corresponding matrices from D1 as C
(1)
m and Q̂m.

To determine the optimal number of bins m, we formulate the following optimization

problem:
max
m≥1

{
‖Q?

m − Q̂m‖F + λ
(

S(Q?
m) + S(Q̂m)

)}
,

where ‖·‖F denotes the Frobenius norm, λ is a user-defined smoothing constraint, and

S(·) is the smoothness measure of the transition matrix defined as:

S(Qm) = −

√√√√m−1∑
u=2

m−1∑
v=2

(∇2quv)2.

where ∇2quv = qu+1,v + qu−1,v + qu,v+1 + qu,v−1 − 4quv denotes the second derivatives.

Step 2: χ2 Transition Discrepancy Test A chi-square test statistics Wm is given by

Wm =
m∑

u=1

m∑
v=1

c
(0)
u c

(1)
u

c
(0)
uv + c

(1)
uv

(q?
uv − q̂uv)2 (3)

where c
(k)
u =

∑m
v=1 c

(k)
uv is the the total count of transitions from state u.

Results

(a) Real Q?
(b) Q̂1 (0.99) (c) Q̂2 (≈ 0)

Figure 2. Transition probability matrices of history embeddings Q from (a) real data, (b) data generated

by Model 1, and (c) data generated by Model 2. Model 1 exhibits a better fit compared to Model 2, as
evidenced by the closer resemblance between the histograms in (a) and (b). The number in the

parentheses indicates the corresponding testing score.

Table 1. Testing accuracy on synthetic dataset with α = 0.05. “–” indicates the method is not applicable.
Methods Time Series TPP STPP

P ?
Average

ARMA(2, 1) ARMA(2, 1) ARMA(2, 2) ARMA(2, 1) ARMA(2, 2)
Average

SE SC SE SC
Average

STD GAU STD GAU

P̂ ARMA(2, 1) ARMA(2, 2) ARMA(2, 2) GARCH(1, 1) GARCH(1, 1) SE SC SC SE STD GAU GAU STD

EL 0.37 0.08 0.33 0.23 0.76 0.64 – – – – – – – – –

PT-QW 0.52 0.91 0.15 0.93 0.95 0.08 – – – – – – – – –

S-CvM 0.44 0.98 0.08 0.97 0.02 0.04 – – – – – – – – –

Stein – – – – – - 0.51 0.32 0.47 0.51 0.74 – – – –

KSD – – – – – - 0.56 0.66 0.78 0.72 0.08 – – – –

MMD 0.62 0.82 0.15 0.72 0.75 0.82 0.45 0.53 0.61 0.31 0.35 0.43 0.65 0.68 0.10 0.26
EWD-2 0.55 0.70 0.10 0.68 0.70 0.84 0.53 0.80 0.69 0.25 0.37 0.44 0.75 0.80 0.07 0.13
EWD-4 0.61 0.45 0.65 0.37 0.98 0.87 0.53 0.46 0.33 0.63 0.68 0.48 0.13 0.09 0.93 0.75
EWD-6 0.66 0.60 0.52 0.58 0.95 0.91 0.56 0.54 0.63 0.54 0.52 0.38 0.68 0.63 0.07 0.13
EWD-8 0.66 0.80 0.15 0.76 0.94 0.84 0.53 0.65 0.76 0.38 0.39 0.48 0.83 0.88 0.12 0.17
EWD-10 0.67 0.95 0.15 0.85 0.77 0.65 0.52 0.80 0.80 0.22 0.29 0.46 0.94 0.85 0.05 0.09
Scott 0.56 0.97 0.08 0.47 0.72 0.58 0.43 0.99 1 0.03 0.01 0.49 0.98 1 0.005 0.001
RENAL 0.72 0.71 0.60 0.65 0.92 0.95 0.61 0.64 0.62 0.58 0.56 0.60 0.70 0.57 0.67 0.44

Table 2. Testing accuracy on real data with α = 0.05. For earthquake data, we consider two cases: TPP

(time only) and STPP (spatio-temporal).

Model Weather Time Series Earthquake TPP Earthquake STPP

P ?
Average

PIT SFO SFO PIT
Average

JP NC NC JP
Average

JP JP NC NC

P̂ PIT SFO PIT SFO JP NC JP NC JP NC JP NC

MMD 0.52 1 0.98 0.02 0.01 0.37 0.24 0.47 0.42 0.34 0.51 0.15 0.05 0.98 0.97
RENAL 0.66 0.65 0.67 0.58 0.75 0.57 0.57 0.63 0.52 0.54 0.62 0.6 0.37 0.72 0.67

Remark: RENAL consistently achieves one of the highest Type I accuracies and best Type

II accuracies with superior performance since:

(i) It exhibits the highest overall accuracy and balanced performance across all scenarios;

(ii) It requires few model specifications or assumptions and taks time-dependence into

account;

(iii) It is applicable across all settings while some baseline methods are limited to certain

cases.
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Code Available at: https://github.com/aoranzhangmia/Neural-GoF-Time INFORMS 2024, DMDAWorkshop, Seattle aoranz@andrew.cmu.edu
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