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TL;DR: In this paper, we introduce a general algorith-
mic framework named Spatio-Temporal Conformal Pre-
diction (STCP), designed to generate prediction inter-
vals for the future number of distributed energy resources
(DERs) installations within each spatial subregion. These
intervals account for uncertainties arising from neighboring
subregions, providing robust references for utility decision-
makers to undertake strategic grid planning at the spatio-
temporal level. Theoretically, we demonstrate that the al-
gorithm is both efficient (informative) and valid (reliable),
ensuring that the prediction intervals are not only sharp
but also asymptotically cover the true count with a speci-
fied coverage probability. Lastly, in collaboration with AES
Indiana, we apply our algorithm to forecast the growth of
photovoltaic installations in the Indianapolis metropolitan
area through 2050, offering insights into the future energy
landscape and uncovering potential growth patterns.

Introduction

Distributed energy resources (DERs), such as solar panels,
are renewable energy resources associated with high unpre-
dictability and high stakes.

Figure: Insufficiently reinforced infrastructures with DER units may
cause overload backfeed and underload normal feed to customers.

Spatio-temporal uncertainty quantification is a critical step
in the decision-making pipeline of strategic grid planning &
operations.

Figure: Example of a decision-making flow chart for substation upgrade.

Problem Setup

The goal is to predict and quantify the uncertainty of the growth
of DERs across M subregions (e.g. substations). We want:

• Reliable: A total of M prediction intervals with
probabilistic coverage guarantees,

• Informative: Appropriately account for underestimating &
overestimating uncertainty across multiple subregions.

Mathematical formulation: Given some significance level α,
we aim to obtain M prediction intervals

{
Ĉm(α))

}
m=1,...,M

such
that for all m = {1, . . . , M},

P

 ⋂
m′∈N (m)

{
YT,m′ ∈ Ĉm′(α)

} ≥ 1 − α, (1)

where YT,m′ is the prediction target (the future installation counts
at m′ of DER units), and N (m) denotes the neighborhood region
of subregion m.
Highlights:

1 Tailors to practical spatio-temporal decision-making, which
account for “neighborhoods” rather than individual or all
infrastructures.

2 User can flexibly control for how “radical” or “conservative”
the uncertainty quantification result is.

3 Avoids curse of dimensionality by exploiting low-rank (if
available) neighborhood structure.

Theory Sketch

Figure: Diagrammatic representation of theoretical insights

Efficiency measures how informative the prediction interval is,
which is characterized by its size.
Lemma 1: Smaller neighborhood specification leads to higher
efficiency of STCP.
Theorem 1 (Relative efficiency): The worst-case efficiency
of STCP is no worse than the best-case efficiency of a trivial mod-
ification of PCP under our setting.

• PCP is a baseline who cannot directly achieve (1).
Theorem 2 (Asymptotic validity): Objective (1) can be
asymptotically approximated with large samples.

• Asymptotic is the best that we can achieve without placing
assumptions on the temporal dependency of data.

Algorithm: Spatio-Temporal Conformal Prediction (STCP)

Figure: Illustration of our proposed algorithm. The training phase splits the dataset (D), where the training data (Dtr) is used to fit the model (λ),
and then used with the calibration data (Dcal) to calculate the set of neighbor-aware nonconformity scores (E). Finally, Quantile regression (Q) is
fitted over E to predict the magnitude of the uncertainty and augment the base predictions of λ to produce the prediction intervals.

Case Study

Data description: In collaboration with AES Indiana, we
collected 1, 742 customer-level rooftop solar panel installa-
tion records, including all installations from 2010 to mid-June
2024 within the AES service territory.

Figure: Exploratory data analysis and visualizations of the data

Analysis: We apply our STCP algorithm in a rolling manner
to provide spatio-temporal forecasts of the total number of
solar panel installations and their uncertainties through 2050.

Figure: Temporal visualization. Left: aggregated. Right: top four
substations with highest base prediction.

Figure: Spatial snapshots of the evolution of installation. From left to
right: low, base, high, uncertainty. From top to bottem: Jan of 2024,
2037, 2050.

Figure: Base and uncertainty comparison across 52 substations.


